Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Machine Learning for Medical Image Reconstruction (Mlmir 2022) ; 13587:84-94, 2022.
Article in English | Web of Science | ID: covidwho-2085279

ABSTRACT

While Computed Tomography (CT) is necessary for clinical diagnosis, ionizing radiation in the imaging process induces irreversible injury, thereby driving researchers to study sparse-view CT reconstruction. Iterative models are proposed to alleviate the appeared artifacts in sparse-view CT images, but their computational cost is expensive. Deep-learning-based methods have gained prevalence due to the excellent reconstruction performances and computation efficiency. However, these methods ignore the mismatch between the CNN's local feature extraction capability and the sinogram's global characteristics. To overcome the problem, we propose Dual-Domain Transformer (DuDoTrans) to simultaneously restore informative sinograms via the long-range dependency modeling capability of Transformer and reconstruct CT image with both the enhanced and raw sinograms. With such a novel design, DuDoTrans even with fewer involved parameters is more effective and generalizes better than competing methods, which is confirmed by reconstruction performances on the NIH-AAPM and COVID-19 datasets. Finally, experiments also demonstrate its robustness to noise.

2.
24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 ; 12906 LNCS:86-96, 2021.
Article in English | Scopus | ID: covidwho-1469648

ABSTRACT

Computed tomography (CT) reconstruction from X-ray projections acquired within a limited angle range is challenging, especially when the angle range is extremely small. Both analytical and iterative models need more projections for effective modeling. Deep learning methods have gained prevalence due to their excellent reconstruction performances, but such success is mainly limited within the same dataset and does not generalize across datasets with different distributions. Hereby we propose ExtraPolationNetwork for limited-angle CT reconstruction via the introduction of a sinogram extrapolation module, which is theoretically justified. The module complements extra sinogram information and boots model generalizability. Extensive experimental results show that our reconstruction model achieves state-of-the-art performance on NIH-AAPM dataset, similar to existing approaches. More importantly, we show that using such a sinogram extrapolation module significantly improves the generalization capability of the model on unseen datasets (e.g., COVID-19 and LIDC datasets) when compared to existing approaches. © 2021, Springer Nature Switzerland AG.

SELECTION OF CITATIONS
SEARCH DETAIL